
 
Abstract-- This paper presents an experimental analysis and 
discussion on implementation issues with regards to the 
performance of message authentication algorithms in embedded 
applications. Two such algorithms, namely, MD5 and SHA-1 
are investigated when implemented into two different 
platforms: 

1. 32-Bit Processors (Intel processor (Pentium III 
processor at 1000 MHz)) 

2. 8-bit microcontrollers ( like PHYTEC miniMODUL-
537) 

Computational Complexity as well as CPU-processing time 
results, regarding the performance of these algorithms, both in 
the 32-bit processors case as well as in the 8-bit processors case 
are presented. The CPU-processing time results show that such 
algorithms could be easily incorporated in embedded 
applications relying on 8-bit microcontrollers and requiring 
data integrity assurance and data origin authentication. Such 
applications could involve electronic mail, system monitoring, 
data mining, biometric security, secure data communications 
etc. Although NIST has presented similar analyses regarding 
cryptographic algorithms [1], algorithms aimed on the other 
hand at data authentication and security protocols 
implementation have not been investigated in this context. This 
is precisely the goal and the contribution of this paper.  
 
Index Terms—Message Digests Complexity Analysis, Hash 
Functions, Message Authentication Complexity Analysis, 
Embedded Systems. 
 

I. INTRODUCTION  

his paper deals with message authentication algorithms 
and more specifically with one way hash functions, 

which are of primary importance for the security mechanisms 
of telecommunication systems.  
One-way hash functions take as input strings of variable 
length and produce, according to their mapping algorithm, an 
output of fixed length, generally smaller than the input string, 
called digest or hash value. One-way hash functions are used 
in database and file system management and in security 
protocols such as authentication, data integrity and digital 
signature mechanisms in telecommunication applications 
[2,3,4,5,6,7,8]. Regarding their required characteristics, 
among others, we point out the easiness to compute the 
digests and the hardness to compute the message from a 
given digest and to find another message with the same 
digest value. However, these characteristics are not sufficient 
for the one-way hash functions to be applied in cryptographic 
protocols of communication systems.  Therefore, collision 

resistance is required, which means that it is hard to find two 
or more random messages to have the same digest [6].  
Although Message digests are so important in the security 
mechanisms of telecommunication systems there is no 
comparative report in the literature regarding their 
performance characteristics. More emphasis has been drawn 
in theoretical tests regarding their quality characteristics. 
Much less emphasis, however, has been put on practical 
evaluation schemes regarding these quality characteristics. 
Such practical evaluation methodologies and comparative 
reports exist with regards only to cryptographic algorithms 
[1]. The goal of this paper is to present an experimental 
report for the performance characteristics, regarding 
computational and processing time complexity of one way 
hash functions.  
In this section, we discuss some aspects of well-known one-
way hash functions. The second section is dedicated to the 
factors that characterize the computational complexity of 
one-way functions. In the third section, we describe the 
experimental methodology for evaluating complexity of the 
algorithms under consideration. Along with MD5 and SHA 
in this experimental section we include, for comparison 
reasons the well known CRC algorithms. Finally, we 
conclude the paper and outline future work on this subject.  
Several one-way hash functions have been proposed and are 
in the meantime extensively used in security mechanisms, 
such as MD2, MD4, MD5, SHA and functions that rely on 
symmetric or asymmetric cryptographic systems. In the 
following, we shortly underline some relevant parameters of 
the MD5 and the SHA from the points of view under 
consideration. 
The MD5 algorithm handles messages of arbitrary length and 
produces digests consisting of 128 bits [9, 10, 11]. Each 
message, after it has been appended by padding bits, is 
processed in blocks of 512 bits in length. A buffer of 128 bits 
holds the intermediate and the final results of the one-way 
function. Four rounds of processing comprise the algorithm. 
Each round consists of 16 processing steps. The processing 
relies on values constructed from the sine function, bit 
rotation and addition modulo 232. Four primitive logical 
functions are used, where each one of them is used for one 
out of the four rounds of processing. The logical functions 
perform a set of bit-wise logical operations and take three 32 
bit words as input and produce a 32 bit word as output. 
The Secure Hash Algorithm (SHA, [9, 10, 11, 12]) is a 
variant of the MD4 algorithm, like the MD5 algorithm. 
However, the algorithm produces digests of 160 bits in 
length, although it takes as input messages of arbitrary length 
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as the MD5 does. Each message, similarly to the MD5, after 
it has been appended by padding bits is processed in blocks 
of 512 bits in length. A buffer of 160 bits holds the 
intermediate and the final results of the one-way function. 
The algorithm consists of 80 processing steps. The 
processing relies on four additive constants and, like the 
MD5, on bit rotation (circular left shift) and addition modulo 
232. Three different primitive logical functions are used, 
each one of them for a corresponding step of the processing. 
Each logical function performs a set of bit-wise logical 
operations, takes three 32 bit words as input and produces a 
32 bit word as output. 
 

II. ONE WAY HASH FUNCTION COMPUTATIONAL AND 

PROCESSING TIME COMPLEXITY ISSUES  

 
We first, more formally discuss one way hash functions.  
A one-way hash function, H(M), operates on an arbitrary-
length pre-image message, M. It returns a fixed-length hash 
value, h. 
       h = H(M), where h is of length m 
Many functions can take an arbitrary-length input and return 
an output of fixed length, but one-way hash functions have 
additional characteristics that make them one-way: 
       Given M, it is easy to compute h. 
       Given h, it is hard to compute M such that H(M) =h. 
       Given M, it is hard to find another message, M', such 
that H(M) = H(M'). 
The whole point of the one-way hash function is to provide a 
"fingerprint" of M that is unique. In some applications, one-
way ness is insufficient; we need an additional requirement 
called collision-resistance; It is hard to find two random 
messages, M and M', such that H(M) = H(M'). Hash 
functions of 64 bits are just too small to survive a birthday 
attack. Most practical one-way hash functions produce 128-
bit hashes. This forces anyone attempting the birthday attack 
to hash 264 random documents to find two that hash to the 
same value, not enough for lasting security. NIST, in its 
Secure Hash Standard (SHS), uses a 160-bit hash value. This 
makes the birthday attack even harder, requiring 280 random 
hashes. 
The following method has been proposed to generate a 
longer hash value than a given hash function produces. 
 
 (1) Generate the hash value of a message, using a one-way 
hash function. 
 (2) Prepend the hash value to the message. 
 (3) Generate the hash value of the concatenation of the 
message and the hash value. 
 (4) Create a larger hash value consisting of the hash value 
generated in step (1) concatenated with the hash value 
generated in step (3). 
 (5) Repeat steps (1) through (3) as many times as we wish. 
 
It's not easy to design a function that accepts an arbitrary-
length input, let alone make it one-way. In the real world, 
one-way hash functions are built on the idea of a 
compression function. This one-way function outputs a hash 

value of length n given an input of some larger length m. The 
inputs to the compression function are a message block and 
the output of the previous blocks of text (see Figure 1). The 
output is the hash of all blocks up to that point. That is, the 
hash of block Mj is    hj = f(Mj,hj - 1 ) 

This hash value, along with the next message block, becomes 
the next input to the compression function. The hash of the 
entire message is the hash of the last block. The pre-image 
should contain some kind of binary representation of the 
length of the entire message. This technique overcomes a 
potential security problem resulting from messages with 
different lengths possibly hashing to the same value. This 
technique is sometimes called MD-strengthening. Various 
researchers have theorized that if the compression function is 
secure, then this method of hashing an arbitrary-length pre-
image is also secure-but nothing has been proved. 

II.1 SECURE HASH STANDARD 

NIST [12], along with the NSA, designed the Secure Hash 
Algorithm (SHA) for use with the Digital Signature 
Standard. (The standard is the Secure Hash Standard (SHS); 
SHA is the algorithm used in the standard.) According to the 
Federal Register: 
A Federal Information Processing Standard (FIPS) for Secure 
Hash Standard (SHS) is being proposed. This proposed 
standard specified a Secure Hash Algorithm (SHA) for use 
with the proposed Digital Signature Standard. Additionally, 
for applications not requiring a digital signature, the SHA is 
to be used whenever a secure hash algorithm is required for 
Federal applications. SHA produces a 160-bit hash, longer 
than MD5. This Standard specifies a Secure Hash Algorithm, 
SHA-1, for computing a condensed representation of a 
message or a data file. When a message of any length < 264 
bits is input, the SHA-1 produces a 160-bit output called a 
message digest. The message digest can then be input to the 
Digital Signature Algorithm (DSA) which generates or 
verifies the signature for the message. Signing the message 
digest rather than the message often improves the efficiency 
of the process because the message digest is usually much 
smaller in size than the message. The same hash algorithm 
must be used by the verifier of a digital signature as was used 
by the creator of the digital signature. The SHA-1 is called 
secure because it is computationally infeasible to find a 
message which corresponds to a given message digest, or to 
find two different messages which produce the same message 
digest. Any change to a message in transit will, with very 
high probability, result in a different message digest, and the 

Fig. 1 Block based derivation of one way hash functions 
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signature will fail to verify. SHA-1 is a technical revision of 
SHA (FIPS 180). A circular left shift operation has been 
added to the specifications in section 7, line b, page 9 of FIPS 
180 and its equivalent in section 8, line c, page 10 of FIPS 
180. This revision improves the security provided by this 
standard. 

Figure 2: Using the SHA-1 with the DSA 
 
The SHA-1 is designed to have the following properties: it is 
computationally infeasible to find a message which 
corresponds to a given message digest, or to find two 
different messages which produce the same message digest. 
The SHA-1 may be used with the DSA in electronic mail, 
electronic funds transfer, software distribution, data storage, 
and other applications which require data integrity assurance 
and data origin authentication. The SHA-1 may also be used 
whenever it is necessary to generate a condensed version of a 
message. The SHA-1 may be implemented in software, 
firmware, hardware, or any combination thereof. 

II.2  SECURE HASH STANDARDS CALCULATION 

ANALYSIS 

 
I) BIT STRINGS AND INTEGER ENCODING FOR SHS 
CALCULATION 
 
The following terminology related to bit strings and integers 
will be used:  
a. A hex digit is an element of the set {0, 1, ... , 9, A, ... , F}. 
A hex digit is the representation of a 4-bit string. Examples: 7 
= 0111, A = 1010.  

b. A word equals a 32-bit string which may be represented as 
a sequence of 8 hex digits. To convert a word to 8 hex digits 

each 4-bit string is converted to its hex equivalent as 
described in (a) above. Example:  

1010 0001 0000 0011 1111 1110 0010 0011 = A103FE23.  
 

c. An integer between 0 and 232 - 1 inclusive may be 
represented as a word. The least significant four bits of the 
integer are represented by the right-most hex digit of the 
word representation. Example: the integer 291 = 28+25+21+20 
= 256+32+2+1 is represented by the hex word, 00000123.  

If z is an integer, 0 <= z < 264, then z = 232x + y where 0 <= x 
< 232 and 0 <= y < 232. Since x and y can be represented as 
words X and Y, respectively, z can be represented as the pair 
of words (X,Y).  

d. block = 512-bit string. A block (e.g., B) may be 
represented as a sequence of 16 words. 
 
II) WORD OPERATIONS FOR SHS CALCULATION 
 
The following logical operators will be applied to words:  
a. Bitwise logical word operations  

  
X ^ Y            =  bitwise logical "and" of  X and Y. 
 
X \/ Y            =  bitwise logical "inclusive-or" of X 
and Y. 
     
X XOR Y       =  bitwise logical "exclusive-or" of X 
and Y. 
 
~ X                =  bitwise logical "complement" of X. 
 
Example:  
                 01101100101110011101001001111011 
      XOR   01100101110000010110100110110111 
            -------------------------------- 
         =      00001001011110001011101111001100 

b. The operation X + Y is defined as follows: words X and Y 
represent integers x and y, where 0 <= x < 232 and 0 <= y < 
232. For positive integers n and m, let n mod m be the 
remainder upon dividing n by m. Compute  

z = (x + y) mod 232.  
 
Then 0 <= z < 232. Convert z to a word, Z, and 
define Z = X + Y.  

c. The circular left shift operation Sn(X), where X is a word 
and n is an integer with 0 <= n 32, is defined by  

Sn(X) = (X << n) OR (X >> 32-n).  
 
In the above, X << n is obtained as follows: discard 
the left-most n bits of X and then pad the result with 
n zeroes on the right (the result will still be 32 bits). 
X >> n is obtained by discarding the right-most n 
bits of X and then padding the result with n zeroes 
on the left. Thus Sn(X) is equivalent to a circular 
shift of X by n positions to the left. 
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III) MESSAGE PADDING FOR SHS CALCULATION 
 
The SHA-1 is used to compute a message digest for a 
message or data file that is provided as input. The message or 
data file should be considered to be a bit string. The length of 
the message is the number of bits in the message (the empty 
message has length 0). If the number of bits in a message is a 
multiple of 8, for compactness we can represent the message 
in hex. The purpose of message padding is to make the total 
length of a padded message a multiple of 512. The SHA-1 
sequentially processes blocks of 512 bits when computing the 
message digest. The following specifies how this padding 
shall be performed. As a summary, a "1" followed by m "0"s 
followed by a 64-bit integer are appended to the end of the 
message to produce a padded message of length 512 * n. The 
64-bit integer is L, the length of the original message. The 
padded message is then processed by the SHA-1 as n 512-bit 
blocks.  
Suppose a message has length L < 264. Before it is input to 
the SHA-1, the message is padded on the right as follows:  

a. "1" is appended. Example: if the original message 
is "01010000", this is padded to "010100001".  

b. "0"s are appended. The number of "0"s will 
depend on the original length of the message. The 
last 64 bits of the last 512-bit block are reserved for 
the length L of the original message.  
Example: Suppose the original message is the bit 
string 
01100001 01100010 01100011 01100100 
01100101. 
 
After step (a) this gives  
01100001 01100010 01100011 01100100 01100101 
1. 
Since L = 40, the number of bits in the above is 41 
and 407 "0"s are appended, making the total now 
448. This gives (in hex)  
61626364 65800000 00000000 00000000  
00000000 00000000 00000000 00000000  
00000000 00000000 00000000 00000000  
00000000 00000000.  
 
c. Obtain the 2-word representation of L, the 
number of bits in the original message. If L < 232 
then the first word is all zeroes. Append these two 
words to the padded message.  
 
Example: Suppose the original message is as in (b). 
Then L= 40 (note that L is computed before any 
padding). The two-word representation of 40 is hex 
00000000 00000028. Hence the final padded 
message is hex  
61626364 65800000 00000000 00000000  
00000000 00000000 00000000 00000000  
00000000 00000000 00000000 00000000  
00000000 00000000 00000000 00000028.  
The padded message will contain 16 * n words for 
some n > 0. The padded message is regarded as a 

sequence of n blocks M1 , M2, ... , Mn, where each 
Mi contains 16 words and M1 contains the first 
characters (or bits) of the message. 

IV) MESSAGE DIGEST COMPUTATION FOR SHS 
 
First, the message is padded to make it a multiple of 512 bits 
long. Padding is exactly the same as in MD5: First append a 
one, then as many zeros as necessary to make it 64 bits short 
of a multiple of 512, and finally a 64-bit representation of the 
length of the message before padding. Five 32-bit variables 
(MD5 has four variables, but this algorithm needs to produce 
a 160-bit hash) are initialized as follows: 
 
A = 0x67452301 
B = 0xefcdab89 
C = 0x98badcfe 
D = 0x10325476 
E = 0xc3d2e1f0 
 
The main loop of the algorithm then begins. It processes the 
message 512 bits at a time and continues for as many 512-bit 
blocks as are in the message. First the five variables are 
copied into different variables: a gets A, b gets B, G gets G, d 
gets D, and e gets E. 
The main loop has four rounds of 20 operations each (MD5 
has four rounds of 16 operations each). Each operation 
performs a nonlinear function on three of a, b, G, d, and e, 
and then does shifting and adding similar to MD5. 
SHA's set of nonlinear functions is: 
 
ft(X,Y,Z) = (XI\ Y) v ((-,X) I\ Z), for t = a to 19. 
 
ft(X,Y,Z) = X +Y + Z, for t = 20 to 39. 
 
ft(X,Y,Z) = (X I\ Y) v (X I\ Z) v (y I\ Z), for t = 40 to 59. 
 
ft(X,Y,Z) =X + Y + Z, for t = 60 to 79. 
 
Four constants are used in the algorithm: 
 
Kt = 0x5a827999, for t = 0 to 19. 
 
Kt = 0x6edgebal, for t = 20 to 39. 
 
Kt = 0x8flbbcdc, for t = 40 to 59. 
 
Kt = 0xca62cld6, for t = 60 to 79. 
 
(those numbers came from: Ox5a827999 = 21/2/4, 
Ox6edgebal = 31/2/4, Ox8flbbcdc = 51/2/4, and Oxca62cld6 = 
101/2/4; all times 232.) 
The message block is transformed from 16 32-bit words (M0 
to Ml5) to 80 32-bit words (W0 to W79) using the following 
algorithm: 
 
Wt = Mt, for t = 0 to 15 
 
Wt = (Wt -3 + Wt - 8 + Wt- 14 + Wt- 16) <<< 1, for t = 16 to 
79. 
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(As an interesting aside, the original SHA specification did 
not have the left circular shift. The change II corrects a 
technical flaw that made the standard less secure than had 
been thought. The NSA has refused to elaborate on the exact 
nature of the flaw.) 
 
 
If t is the operation number (from 0 to 79), Wt represents the 
tth sub-block of the expanded message, and <<< s represents 
a left circular shift of s bits, then the main loop looks like: 
 
FOR t = 0 to 79 
TEMP = (a <<< 5) + ft(b,c,d) + e + Wt + Kt 
e=d 
 d=c 
c = b <<< 30 
b=a 
a = TEMP 

Figure 3. Shifting Operation in SHS  
 
Figure 3 shows one operation. Shifting the variables 
accomplishes the same thing as MD5 does by using different 
variables in different locations. After all of this, a, b, c, d, and 
e are added to A, B, C, D, and E respectively, and the 
algorithm continues with the next block of data. The final 
output is the concatenation of A, B, C, D, and E. 
 
SHA is very similar to MD4, but has a 160-bit hash value. 
The main changes are the addition of an expand 
transformation and the addition of the previous step's output 

into the next step for a faster avalanche effect. Ron Rivest 
made public the design decisions behind MDS, but SHA's 
designers did not. Below are Rivest's MD5 improvements to 
MD4 and how they compare with SHA's: 
1. " A fourth round has been added." SHA does this, too. 
However, in SHA the fourth round uses the same f function 
as the second round. 
2. "Each step now has a unique additive constant." SHA 
keeps the MD4 scheme where it reuses the constants for each 
group of 20 rounds. 
3. "Each step now adds in the result of the previous step. This 
promotes a faster avalanche effect." This change has been 
made in SHA as well. The difference in SHA is that a fifth 
variable is added, and not b, c, or d, which is already used in 
it. This subtle change makes the den Boer-Bosselaers attack 
against MD5 impossible against SHA. 
4. "The order in which message sub-blocks are accessed in 
rounds 2 and 3 is changed, to make these patterns less alike." 
SHA is completely different, since it uses a cyclic error-
correcting code. 
5. "The left circular shift amounts in each round have been 
approximately optimized, to yield a faster avalanche effect. 
The four shifts used in each round are different from the ones 
used in other rounds." SHA uses a constant shift amount in 
each round. This shift amount is relatively prime to the word 
size, as in MD4. 
This leads to the following comparison: SHA is MD4 with 
the addition of an expand transformation, an extra round, and 
better avalanche effect; MD5 is MD4 with improved bit 
hashing, an extra round, and better avalanche effect. 
There are no known cryptographic attacks against SHA. 
Because it produces a 160-bit hash, it is more resistant to 
brute-force attacks (including birthday attacks) than 128-bit 
hash functions. 
 

II.3   THE   MD5 HASH FUNCTION 

The algorithm takes as input a message of arbitrary length 
and produces as output a 128-bit "fingerprint" or "message 
digest" of the input. It is conjectured that it is 
computationally infeasible to produce two messages having 
the same message digest, or to produce any message having a 
given pre-specified target message digest. The MD5 
algorithm is intended for digital signature applications, where 
a large file must be "compressed" in a secure manner before 
being encrypted with a private (secret) key under a public-
key cryptosystem such as RSA. The MD5 algorithm is 
designed to be quite fast on 32-bit machines. In addition, the 
MD5 algorithm does not require any large substitution tables; 
the algorithm can be coded quite compactly. The MD5 
algorithm is an extension of the MD4 message-digest 
algorithm. MD5 is slightly slower than MD4, but is more 
"conservative" in design. MD5 was designed because it was 
felt that MD4 was perhaps being adopted for use more 
quickly than justified by the existing critical review; because 
MD4 was designed to be exceptionally fast, it is "at the edge" 
in terms of risking successful cryptanalytic attack. Although 
more complex than MD4, it is similar in design and also 
produces a 128-bit hash. After some initial processing, MD5 
processes the input text in 512-bit blocks, divided into 16 32-
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bit sub-blocks. The output of the algorithm is a set of four 
32-bit blocks, which concatenate to form a single 128-bit 
hash value. First, the message is padded so that its length is 
just 64 bits short of being a multiple of 512. This padding is a 
single 1-bit added to the end of the message, followed by as 
many zeros as are required.  
 
Then, a 64-bit representation of the message's length (before 
padding bits were added) is appended to the result. These two 
steps serve to make the message length an exact multiple of 
512 bits in length (required for the rest of the algorithm), 
while ensuring that different messages will not look the same 
after padding. Four 32-bit variables are initialized: 
 
A = OxO1234567 
B = Ox89abcdef 
C = Oxfedcba98 
D = Ox76543210 
 
These are called chaining variables. 
 

Figure 4. MD5 calculation through 4 rounds  
 
Now, the main loop of the algorithm begins. This loop 
continues for as many 512bit blocks as are in the message. 
The four variables are copied into different variables: a gets 
A, b gets B, c gets C, and d gets D. The main loop has four 
rounds (MD4 had only three rounds), all very similar. Each 
round uses a different operation 16 times. Each operation 
performs a nonlinear function on three of a, b, c, and d. 
 
Then it adds that result to the fourth variable, a subblock of 
the text and a constant. Then it rotates that result to the right 
a variable number of bits and adds the result to one of a, b, c; 
or d. Finally the result replaces one of a, b, c, or d. See 
Figures 7 and 8. 
 
 

II.4 MD5 HASH FUNCTION CALCULATION ANALYSIS 

We begin by supposing that we have a b-bit message as 
input, and that we wish to find its message digest. Here b is 
an arbitrary nonnegative integer; b may be zero, it need not 
be a multiple of eight, and it may be arbitrarily large. We 
imagine the bits of the message written down as follows: 
 
          m_0 m_1 ... m_{b-1} 
 
The following five steps are performed to compute the 
message digest of the message. 
 
Step 1. Append Padding Bits 
 
The message is "padded" (extended) so that its length (in 
bits) is congruent to 448, modulo 512. That is, the message is 
extended so that it is just 64 bits shy of being a multiple of 
512 bits long. Padding is always performed, even if the 
length of the message is already congruent to 448, modulo 
512. Padding is performed as follows: a single "1" bit is 
appended to the message, and then "0" bits are appended so 
that the length in bits of the padded message becomes 
congruent to 448, modulo 512. In all, at least one bit and at 
most 512 bits are appended. 
 
 Step 2. Append Length 
 
A 64-bit representation of b (the length of the message before 
the padding bits were added) is appended to the result of the 
previous step. In the unlikely event that b is greater than 
2^64, then only the low-order 64 bits of b are used. (These 
bits are appended as two 32-bit words and appended low-
order word first in accordance with the previous 
conventions.) At this point the resulting message (after 
padding with bits and with b) has a length that is an exact 
multiple of 512 bits. Equivalently, this message has a length 
that is an exact multiple of 16 (32-bit) words. Let M [0 ... N-
1] denote the words of the resulting message, where N is a 
multiple of 16. 
 
 Step 3. Initialize MD Buffer 
 
A four-word buffer (A,B,C,D) is used to compute the 
message digest. Here each of A, B, C, D is a 32-bit register. 
These registers are initialized to the following values in 
hexadecimal, low-order bytes first): 
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          word A: 01 23 45 67 
          word B: 89 ab cd ef 
          word C: fe dc ba 98 
          word D: 76 54 32 10 
 
Step 4. Process Message in 16-Word Blocks 
 
We first define four auxiliary functions that each take as 
input three 32-bit words and produce as output one 32-bit 
word. 
 
          F(X,Y,Z) = XY  v not(X) Z 
          G(X,Y,Z) = XZ  v Y not(Z) 
          H(X,Y,Z) = X  xor Y xor Z 
          I(X,Y,Z) = Y  xor (X v not(Z)) 
 
In each bit position F acts as a conditional: if X then Y else Z 
The function F could have been defined using + instead of v 
since XY and not (X) Z will never have 1's in the same bit 
position.) It is interesting to note that if the bits of X, Y, and 
Z are independent and unbiased, the each bit of F(X,Y,Z) 
will be independent and unbiased. 
The functions G, H, and I are similar to the function F, in that 
they act in "bitwise parallel" to produce their output from the 
bits of X, Y, and Z, in such a manner that if the 
corresponding bits of X, Y, and Z are independent and 
unbiased, then each bit of G(X,Y,Z), H(X,Y,Z), and I(X,Y,Z) 
will be independent and unbiased. Note that the function H is 
the bit-wise "xor" or "parity" function of its inputs. This step 
uses a 64-element table T [1 ... 64] constructed from the sine 
function. Let T[i] denote the i-th element of the table, which 
is equal to the integer part of 4294967296 times abs(sin(i)), 
where i is in radians. We do the following: 
/* Process each 16-word block. */ 
   For i = 0 to N/16-1 do 
 
/* Copy block i into X. */ 
     For j = 0 to 15 do 
     Set X[j] to M[i*16+j]. 
     end /* of loop on j */ 
 
/* Save A as AA, B as BB, C as CC, and D as DD. */ 
     AA = A 
     BB = B 
     CC = C 
     DD = D 
 

Figure 5. Example of MD5 round 1 outcome 
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Those constants, ti, were chosen as follows: 
 
In step i, ti is the integer part of 232*abs(sin(i)), where i is in 
radians. 
 
After all of this, a, b, c, and d are added to A, B, C, D, 
respectively, and the algorithm continues with the next block 
of data. The final output is the concatenation of A, B, C, and 
D. 
 
The MD5 message-digest algorithm is simple to implement, 
and provides a "fingerprint" or message digest of a message 
of arbitrary length. It is conjectured that the difficulty of 
coming up with two messages having the same message 
digest is on the order of 2^64 operations, and that the 
difficulty of coming up with any message having a given 
message digest is on the order of 2^128 operations. The MD5 
algorithm has been carefully scrutinized for weaknesses. It is, 
however, a relatively new algorithm and further security 
analysis is of course justified, as is the case with any new 
proposal of this sort. 
 
The following are the differences between MD4 and MD5: 
 
1.   A fourth round has been added. 
 
2.   Each step now has a unique additive constant. 
 
3.   The function g in round 2 was changed from (XY v XZ v 
YZ) to (XZ v Y not(Z)) to make g less symmetric. 
 
 4.   Each step now adds in the result of the previous step.  
This promotes a faster "avalanche effect". 
 
 5.   The order in which input words are accessed in rounds 2 
and 3 is changed, to make these patterns less like each other. 
 
1.The shift amounts in each round have been approximately 
optimized, to yield a faster "avalanche effect." The shifts in 
different rounds are distinct. 
 
 

III. ONE WAY HASH FUNCTION COMPUTATIONAL AND 

PROCESSING TIME COMPLEXITY ISSUES EXPERIMENTAL STUDY 

 
In order to evaluate performance of SHA and MD5 
especially in embedded applications we have conducted an 
extensive experimental study comparing performance issues 
in two different computer platforms. First,  in 32-bit Pentium 
processor based computers and second, in 8-bit 
microcontrollers, very popular in embedded applications 
[13].  
In the next paragraphs we present the setup and the final 
results obtained by evaluating these algorithms. In addition, 
for comparison reasons, we have included a CRC algorithms 
performance relevant study. 
For the SHA-1 algorithm two C source codes were found. 
One source code is called SHAtest and the other SHAfile. 

Figure 6. Example of MD5 rounds 2 and 3 outcomes 
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The two codes were first compiled and executed using Dev-
C++ environment for 32-bit processors like Intel (Pentium III 
at 1000 MHz) processor. Each code consists of three files: 
SHAtest:   

1. sha1.c 
2. sha1.h 
3. shatest.c 

 
sha1.c Description: 
This file implements the Secure Hashing Standard as defined 
in FIPS PUB 180-1 published April 17, 1995. The Secure 
Hashing Standard, which uses the Secure Hashing Algorithm 
(SHA), produces a 160-bit message digest for a given data 
stream.  In theory, it is highly improbable that two messages 
will produce the same message digest.  Therefore, this 
algorithm can serve as a means of providing a "fingerprint" 
for a message. 
 
shatest.c Description: 
This file will exercise the SHA1 class and perform the three 
tests documented in FIPS PUB 180-1. 
 
SHAfile: 

1. sha1.c 
2. sha1.h 
3. sha.c 

 
sha1.c Description: 
This file implements the Secure Hashing Standard as defined 
in FIPS PUB 180-1 published April 17, 1995. The Secure 
Hashing Standard, which uses the Secure Hashing Algorithm 
(SHA), produces a 160-bit message digest for a given data 
stream.  In theory, it is highly improbable that two messages 
will produce the same message digest.  Therefore, this 
algorithm can serve as a means of providing a "fingerprint" 
for a message. SHA-1 is defined in terms of 32-bit "words".  
This code was written with the expectation that the processor 
has at least a 32-bit machine word size.  If the machine word 
size is larger, the code should still function properly.  One 
caveat to that is that the input functions taking characters and 
character arrays assume that only 8 bits of information are 
stored in each character. SHA-1 is designed to work with 
messages less than 2^64 bits long. Although SHA-1 allows a 
message digest to be generated for messages of any number 
of bits less than 2^64, this implementation only works with 
messages with a length that is a multiple of the size of an 8-
bit character. 

 
sha.c Description: 
This utility will display the message digest (fingerprint) for 
the specified file(s). 
 
The codes were compiled successfully with no errors and 
then were executed. For the first code SHAtest, an MS- DOS 
window was opened after the execution of the code showing 
to us the message digest of the three input messages: 
 
 TESTA   "abc" =  message digest (tA9993E36 

4706816A BA3E2571 7850C26C 9CD0D89D) 

 TESTB 
"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomn
opnopq" = message digest (t84983E44 1C3BD26E 
BAAE4AA1 F95129E5 E54670F1) 

 TESTC   "a" = message digest (t34AA973C 
D4C4DAA4 F61EEB2B DBAD2731 6534016F) 

 
For the second code SHAfile, the code was executed through 
MS-Dos and when a file was inserted as an input the message 
digest of that file was then been calculated.   
 
MD5 C source file for 32-bit Processors 
For the MD5 algorithm two C source codes were found. One 
source code is called MD5code and the other MD5rivest. The 
two codes were first compiled and executed using Dev-C++ 
environment for 32-bit processors like Intel (Pentium III at 
1000 MHz) processor. Each code consists of four files: 
 
MD5code:   

1. global.h 
2. md5.h 
3. MD5C.c 
4. MDDRIVER.c 

 
MD5C.c Description: 
This file contains all the transformations and the calculations 
of the MD5 algorithm. 
 
MDDRIVER.c Description: 
This file contains test driver for MD5. 
 
MD5rivest: 

1. global.h 
2. md5.h 
3. MD5C.c 
4. MDDRIVER.c 

 
MD5C.c Description: 
This file contains all the transformations and the calculations 
of the MD5 algorithm. 
 
MDDRIVER.c Description: 
This file contains test driver for MD2, MD4 and MD5 
 
The codes were compiled successfully with no errors and 
then were executed. For the first code MD5code, a dos 
window was opened after the execution of the code showing 
to us the four possibilities we have: 

 First to enter d for demo test  
 Second to enter s for a string input message 
 Third to enter f for a filename 
 Fourth to enter t for time trial 

 
Choosing one of the above lead us to find the MD5 message 
digest of any input message. 
 
For the second code the MD5rivest code, the code was 
executed through MS-Dos and when a file was inserted as an 
input the message digest of that file was then been calculated.  

INTERNATIONAL JOURNAL OF COMPUTERS Volume 11, 2017

ISSN: 1998-4308 40



 
 CRC C source file for 32-bit Processors 
For the CRC algorithm three C source codes were found. The 
codes were first compiled and executed using Dev-C++ 
environment for 32-bit processors like Intel processor. The 
codes are: 
 

1. crc2.c Computes crc by bit shifting 
2. crcfast.c Computes crc by table lookup 
3. crctab.c Computes tables used in crcfast.c 

 
The utilities crc2 and crcfast compute the cyclic redundancy 
checks for both the crc-16 (used in arc files) and crc-ccitt 
(used in xmodem). crcfast is faster than crc2.  These routines 
compute the crc's for a given file as a means of checking data 
integrity. All the above routines are short and illustrate the 
basic principles of crc calculations. 
The codes were compiled successfully with no errors and 
then were executed. An MS-DOS window was opened after 
the execution of each code showing to us the results. 
 
Machine Word Size and Time functions 
One issue that arises in software implementations is the basic 
underlying architectures. The platforms on which we 
performed testing were oriented to 32-bit architectures. 
However, performance on 8-bit machines is also important. It 
is difficult to project how various architectures will be 
distributed over the next 30 years. Hence, it is difficult to 
assign weights to the corresponding performance figures that 
accurately represent their importance during this timeframe. 
Nonetheless, the following picture emerges: It appears that 
over the next 30 years, 8-bit, 32-bit, and 64-bit architectures 
will all play a significant role (128-bit architectures might be 
added to the list at some point). Although the 8-bit 
architectures used in certain applications will gradually be 
supplanted by 32-bit versions, 8-bit architectures are not 
likely to disappear. Meanwhile, some 32-bit architectures 
will be supplanted by 64-bit versions at the high-end, but 32-
bit architectures will become increasingly relevant in low-
end applications, so that their overall significance will remain 
high. Meanwhile, 64-bit architectures will grow in 
importance. Since none of these predictions can be 
quantified, it appears that versatility is of the essence. Some 
information on the performance of the three algorithms 
(SHA-1, MD5, CRC) with respect to word size may be 
accrued from Tables A.1 and A.3 for 32-bit processors. The 
tables (A.1-A.3) show an approximation of the processor 
time since begging of the program, in clock “ticks”. The 
Clock format shown below was used in order to measure the 
processor time for 32-bit processors: 
 

    Clock_t  clock (void) 
 
Using the above format to determine the elapsed time the 
procedure below was added to each of the previous codes to 
any point of the program for every algorithm (SHA-1, MD5 
and CRC) and the time results were then calculated: 
 
Clock_t now, later; 

Double passed; 
…… 
/* get start clock value */ 
now=clock(); 
 
…….. 
 
do some processing 
 
…….. 
/* get end clock value */ 
later=clock(); 
/* compute elapsed seconds*/ 
passed = (later – now)/(double) CLOCKS_PER_SEC; 
printf ( “ that took %.10e seconds\n”, passed); 
 
Using the above procedure to any point of the program gives 
us the time result we want to measure and as a result we can 
see how much processor time is needed for every calculation 
that is created inside the program.  
 
The results obtained using the above described setup are as 
shown in tables A.1, A.2, A.3 for SHA, MD5 and SRC 
respectively. The operations calculated in these tables are 
mentioned in section II. 
 
 
 
A.1   SHA calculation complexity –processing time – in 32- 
Bit Processors (Intel Pentium III at 1000 Mhz) 
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A.2    MD5 calculation complexity –processing time – in 32- 
Bit Processors (Intel Pentium III at 1000 Mhz) 
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A.3    CRC calculation complexity –processing time – in 32- 
Bit Processors (Intel Pentium III at 1000 Mhz) 
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SHA-1, MD5 and CRC C modified source code for 8-bit 
microcontrollers (PHYTEC miniMODUL-537) 
Using now the Keil Software Chain for programming the 8-
bit microcontroller (miniMODUL-537) three hex-files were 
created. One HEX-file for the SHA-1 algorithm, one HEX-
file for the MD5 algorithm and one HEX-file for the CRC 
algorithm. The previous C source codes that were found for 
each algorithm were compiled and executed using Dev-C++ 
for 32-bit processors. Using now the Keil C51 ANSI C 
compiler the codes were modified in order to match with the 
needs of the new compiler and the 8-bit microcontroller. 
Three new codes one for the SHA-1 algorithm, one for the 
MD5 algorithm and one for the CRC algorithm were created 
in order to produce the three HEX-files needed for download 
to the microcontroller external flash memory.  
 
Creation of Hex-file for SHA-1 Algorithm 
To create a new project file we selected from the µVision2 
menu Project – New Project…. This opens a standard 
Windows dialog that asks us for the new project file name. 
We used a separate folder for each project. We can simply 
use the icon Create New Folder in this dialog to get a new 
empty folder. Then we selected this folder and entered the 
file name for the new project, SHAfile. µVision2 created a 
new project file with the name SHAfile.UV2. Then we added 
to the project the files of the SHA-1 Keil C source code. The 

STARTUP.A51 file is the startup code for the most 8051 
CPU variants. The startup code clears the data memory and 
initializes hardware and reentrant stack pointers. This file 
was also included to the project together with the serinit.h 
header file. After that we put options for our target hardware 
the miniMODUL-537 microcontroller and then we translated 
all source files and line the application with a click on the 
Build Target toolbar icon. Vision2 creates HEX files with 
each build process when Create HEX file under Options for 
Target – Output is enabled. So a hex file for the shafile 
project was created. FlashTools98 for Windows is a utility 
program that allows download of user code in *.hex-file 
format from a host-PC to a PHYTEC Single Board Computer 
(SBC) via an RS-232 connection. The hex file was 
downloaded to the microcontroller and the Hyper Terminal 
was used to see the result which was the calculation of the 
message digest of the input file.  

 
Creation of Hex-file for MD5 Algorithm 
To create a new project file we selected from the µVision2 
menu Project – New Project…. This opens a standard 
Windows dialog that asks us for the new project file name. 
We used a separate folder for each project. We can simply 
use the icon Create New Folder in this dialog to get a new 
empty folder. Then we selected this folder and entered the 
file name for the new project, MD5. µVision2 created a new 
project file with the name MD5.UV2. Then we added to the 
project the files of the MD5 Keil C source code. The 
STARTUP.A51 file is the startup code for the most 8051 
CPU variants. The startup code clears the data memory and 
initializes hardware and reentrant stack pointers. This file 
was also included to the project together. After that we putted 
options for our target hardware the miniMODUL-537 
microcontroller and then we translated all source files and 
line the application with a click on the Build Target toolbar 
icon. Vision2 creates HEX files with each build process 
when Create HEX file under Options for Target – Output is 
enabled. So a hex file for the MD5 project was created. 
FlashTools98 for Windows is a utility program that allows 
download of user code in *.hex-file format from a host-PC to 
a PHYTEC Single Board Computer (SBC) via an RS-232 
connection. The hex file was downloaded to the 
microcontroller and the Hyper Terminal was used to see the 
result which was the calculation of the message digest of the 
input file.  

 

 

 

 

 

 

 

 

 

 

INTERNATIONAL JOURNAL OF COMPUTERS Volume 11, 2017

ISSN: 1998-4308 42



Timing results for 8-bit microcontrollers 

 
A.4 SHA-1 calculation complexity –processing time – in 8 
Bit microcontrollers  
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A.5  MD5 calculation complexity –processing time – in 8 Bit 
microcontrollers  
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IV. CONCLUSIONS 

In this paper two very significant message digests 
algorithms were described in terms of computational 
/processing time complexity, namely, MD5 and SHA-1. The 
goal is to understand the requirements of the implementation 
of such algorithms when they are to be used for embedded 
applications in secure communication networks. Therefore, 
the experimental analysis conducted was performed in two 
computing platforms,   

32-Bit Processors (Intel processor (Pentium III processor 
at 1000 MHz)) and 

8-bit microcontrollers (like PHYTEC miniMODUL-537) 

The performance of the algorithms to the 32-bit 
processors was excellent. The speed of calculating the output 
was very fast. For any input message the message digest of 
that message was calculated and that message digest was 
unique for every input. The same performance was also 
reported to 8-bit microcontrollers. For the SHA-1 algorithm 
the message digest output was calculated for any multiple of 
512-bits because the sha-1 algorithm sequentially processes 
blocks of 512-bits. The same results were found for the MD5 
and CRC algorithms. The timing results from the tables 
outlined above shows that small times duration were needed 
for performing any calculation for each algorithm. Finally we 
can say that these two algorithms can be used in electronic 
mail, electronic funds transfer, software distribution, data 
storage, and other applications which require data integrity 
assurance and data origin authentication even when all these 
is required to be embedded applications in low cost 
controllers [13].  
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